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Abstract
Stream data from devices and sensors are considered a typical kind of big data. Though being promising, they are
useful only when we can reasonably correlate and effectively use them. Herein, services come back to the spotlight.
The position paper reports some of our efforts in promotingservice-based integration and correlation of such stream
data ina real setting– monitoringandoptimizedcoordinationof individual devices in a power plant.
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1. INTRODUCTION SENSORS AND IOT IN

INDUSTRY: A TYPICAL SCENARIO
IoT (Internet of Things) allows industry devices to be 

sensed and controlled remotely, resulting in better efficiency, 
accuracy and economic benefit. With the new wave of the 
forth industry revolution, the IoT-based integration of 
physical systems and computer systems is gaining 
momentum (https://en.wikipedia.org/wiki/Industry_4.0. 
Industry 4.0 Wikipedia.). The massive real-time IoT data 
may drive computing processes and services, and can derive 
a new horizon of industry automation with decentralized 
sensing, reasoning and response. We will examine a partial 
but typical scenario of such change with the example of 
anomaly detection in a power plant. 

In a power plant, there are hundreds of machines 
running continuously and thousands of sensors deployed to 

monitor machine status at real-time. The status attributes 
correlate with each other in multiple ways, and indicate 
equipment status and anomalies. Fig.1 illustrates some 
deployed sensors and their possible correlations in a real 
power plant. In this paper, we advocate a decentralized and 
service-based approach to dynamically correlating the 
sensor data and generating higher-level events for systems 
and people. This poses many research challenges, some of 
which are discussed in the paper include service modeling 
of big stream data as well as data-driven and programmable 
correlation through service hyperlinks. 

Let us take the primary air fan (PAF) unit as an example. 
As left side of Fig.2 shows, a PAF is equipped with 44 
sensors, which continuously generate stream data, such as 
temperature and vibration of fan bearing. The right side of 

Figure 1. Snapshot of Partial Time-varying Correlations among Sensors in a Power Plant. 
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Figure 2. Possible Anomalies Led by the Quick Decrease of Air Pressure: a Real Case. 
Fig.2 shows a partial process to detect anomalies in a PAF. 
The motivation is an observed event, which is the quick 
decrease of air pressure of a PAF. An air pressure decrease 
may cause fan stall, fan surge, or temporarily nothing. We 
cannot assure which result will be led at the beginning. It 
needs to make synthesized analysis with the other correlated 
sensor data and observe the data changes at runtime. For 
example, with the air pressure decreasing by 4kPa, the 
correlated sensor “degree of valve control” decreases by 
10% may lead to the conclusion that the air pressure 
decrease is normal. But if the bearing vibration increases by 
over 0.045mm/s as well as the motor electricity decreases 
by over 5A next, there is a high possibility of the fan stall 
anomaly. Similarly, a fan surge can be confirmed if an air 
pressure decrease happens and the motor electricity 
decreases by over 20A. It is thus meaningful to correlate air 
pressure decrease and fan stall, and we need to check the 
bearing vibration and the motor electricity at runtime. 

Note that we cannot just simply predefine a rule like “< 

air pressure decreases by 4kPa ∧ degree of valve control 

decreases by 10%>  the air pressure decrease is normal”
to make the conclusion. The real case is much more 
complicated. Firstly, we cannot clearly give the boundary 
value for each rule. It is because the status of equipment and 
its environment keeps changing. Secondly, the runtime 
correlations among sensors vary along time. This leads to 
the multiple underlying correlations among sensors. Each 
one may lead to a kind of anomaly. Such path can only be 
clarified step by step at runtime following the process of 
situation changes and users’decisions. As a result, the 
above rules may not be enumerated and pre-defined at the 
beginning, and they should be formed at runtime and 
gradually consummated. Hence, we wish such fast-changing 
data could be automatically grouped together to generate 
higher-level events with service mechanisms. In fact, the 
dynamic correlations among status attributes are 
significantly prevalent. More efficient and effective 

anomaly detection can be achieved by dynamically 
correlating the sensor data. 

2. POSITIONING OF SERVICES IN THE

CONTEXT OF INDUSTRY IOT
Business applications usually follow the “request-and-

response”pattern. However, an IoT application can be more 
ad hoc and reactive. Industrial sensors generate successive 
on-site big stream data. It turns impractical for human 
beings to grasp the whole status with the traditional way of 
top-down programming and request-response thinking. 
Sporadic events are generated from the dynamic correlations 
of decentralized sensors along with the environment 
changes. For a user, it is hard to clarify the complex 
relationships or predict sporadic events. 

Service-oriented paradigm has been seen as a 
mainstream approach for building large-scale distributed 
software systems. To decouple data to be shared from their 
sources, the concept of “data as service”or “data service”is
proposed, which can provide semantically richer view and 
advanced querying functionality. The abstraction of sensor 
data services also gives us good opportunities to examine 
the way to build an IoT application. IoT applications 
possess some new intrinsic features that are different from 
other software applications. To deal with situational and ad-
hoc problems, an IoT application should capture dynamic 
correlations of multiple sensors to respond more 
intelligently to various outside stimuli, like environment 
changes, sporadic events and so on. 

Recently, efforts have been made to deal with big data 
by encapsulating common functionalities for storage, query, 
management, and analysis as services. For example, 
SenseWeb (Grosky, 2007) and Global Sensor Network 
(Aberer, 2007) provided platforms to assist users to share, 
manage, and access sensor data on-demand ubiquitously. Xu 
et al (Xu, 2014) and Perera et al (Perera, 2015) provided IoT 
data resources as services to support accessing cross-
platform data by URI through Web for IoT applications. In 
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our previous work (Han, 2015). we proposed a stream data 
service model to access stream data continuously in real-
time, and implemented a carpooling service based on the 
stream data services. In practice, IoT applications always 
operate in highly dynamic environments. Some works 
(Potocnik, 2014; Bucchiarone, 2015; Cheng, 2016) 
concentrate on new types of services or incremental service 
composition methods to create situation-aware IoT 
applications. Potocnik et al defined a new service type — a 
Complex Event Aware (CEA) service that automatically 
reacts to complex events specified in its interface (Potocnik, 
2014). And Cheng et al proposed an event-driven service 
coordination behavior model based on an extended event-
condition-action (ECA) mechanism (Cheng, 2016). 

We believe an IoT application should be built with the 
“stimuli-and-response”pattern. As shown in Fig 3, a novel 
type of service abstraction, called as proactive data service, 
is proposed to serve as the fundamental unit to form an IoT 
application. Although lots of researches have focused on 
how to encapsulate sensor data into services, their 
traditional service model like REST service is still with the 
“request-and-response”model. With the proposed service
model, we hope to find a more automatic and real-time way 
for handlingsporadic events with the ‘stimuli-and-response’
pattern while maintaining the common data service 
capabilities. 

We blend an event model into our services. Each 
proactive data service can selectively respond to all events 
received from other services. There are multiple options to 

generate an event. For example, we can pre-setup a set of 
events, which could be caught or thrown by a data service. 
An event also can be generated by dynamically correlating 
various sensors. Especially when considering situation 
changes, correlations among different sensors can be 
regarded as important sources to generate underlying 
situational events. 

Correlations among data services influence event routing. 
When an event routes from a source service to a target 
service, the target service will be stimulated to behave 
autonomous to respond to that event. Through this way, 
with an event spreading over, data services on its routing 
path are essentially composed. 

3. CORRELATING STREAM DATA WITH

PROACTIVE DATA SERVICES

3.1 Proactive Data Services
Before defining the Proactive Data Service model for stream 
data, we first state some related concepts. An event can be 
denoted by e. Every event is associated with a 
corresponding event source, attributes with corresponding 
values, and occurrence time. A particular event can be 
classified as a sensor event or a service event. The sensor 
event is generated directly by sensors and the service event 
is generated by services. 
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Figure 3. Rationale of Our Approach. 
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Definition 1. (Sensor Event): a sensor event can be 
represented as ef = 〈sid, p, t〉, in which sid is the unique
identifier of the sensor which generated ef, p = 〈a, v〉 is a
key-value pair, in which a means attribute and v means 
value, and t means the timestamp when the event occurs. 

A service event is generated by transformation of 
multiple sensor events or the other service events. 

Definition 2. (Service Event): a service event can be 
represented as es =〈sid, E, P, t〉, in which sid is the unique
identifier of the service generate es, E = {e1,e2,… ,en}, n>0, 
which is an event set that include several sensor events or 
service events which collectively constitute event es, P={〈a1,
v1〉,〈a2, v2〉,… 〈aj, vj〉} is the concrete content generate by E
which is a set of key-value pairs, and t means the timestamp 
when the service event is generated. 

Correspondingly, a sensor can generate an event stream 

E : 

1 2, , , ,f f fiE e e e

In which, each sensor event has the same sid and the 

same attribute, and each sensor event disappears when new 

event appears by default. And service events with the same 

sid, same event set E, and same attribute sets can also form 

an event stream E : 

1 2, , , ,s s siE e e e . 

In particular, we note an event e in event stream 3E E

as E t , in which t is the timestamp when e occurs, and 

. iE t a  refers to e’s valueof attribute ai. 

Traditional data service is software components that 
provide rich metadata and APIs for service consumers to 
send data requirements and receive data from service 
providers. Data service is a specialization of Web service 
which can be deployed on top of data stores, other services, 
or applications (Carey, 2012). However, because of the 
“request-response”model for traditional data service, it
suffers certain limitations in an IoT environment, such as to 
collect, process, deliver and correlate continuous sensor data. 
To address these limitations, we define our proactive data 
service model based on the above definition of event and 
operation. 

Definition3. (Proactive Data Service): We define a 
proactive data service as a 6-tuple as following (shown in 
Figure 4): 

S = 〈uri, in_events, out_events, operations, filter,
hyperLinks〉. 

In which, uri is the unique identifier, in_events 
represents the input event channel receiving all event 
streams which arrive at the service, filter is responsible for 
deciding how to operate the received event streams and 
operations contains the corresponding operations, 
out_events represent the output event streams generated by 
operations, and hyperLinks refer to a routing table which is 

composed with multiple routing paths, and directs output 
events to the target services. 

output_ 
events

…

…

in_events

Figure 4. The Structure of Our Proactive Data Service. 
Specifically, each operation in operations can be 

represented as , ,trans in outop E func E , in which, 

inE is a set of input event stream, func is the 

transformation function, and outE  is an output event stream, 

in which each event is a service event. 
We present some transformation operations refer to 

(Wang, 2016). Table I shows part of frequently used 
operations. Sensor and service events are both denoted by e. 

Table I. Event Processing Operations. 
Function Expression Description 

CON(∧) e1∧e2 
Conjunction of e1 and e2 without 
occurrence order 

DIS(∨) e1∨e2 
Disjunction of e1 and e2 without 
occurrence order 

NEG(~) ~ e1 Negation of e1 

SEL SEL(e1) Select an event form input events 

ANY(∃) ∃(e1) Any event that occurs of e1 and e2 

SEQ SEQ(e1) 
Select a given sequence of events from 
input events 

EVERY(∀) ∀(e1) Every occurrence of e1 

AVE AVE(a1, e1, e2) Average value of a1 in e1 and e2 

SUM SUM(a1, e1, e2) Summation value of a1 in e1 and e2 

DIF DIF(a1, e1, e2) Difference value of a1 in e1 and e2 

EQ EQ(a1, e1, e2) Judge the equality of a1 in e1 and e2 

COUNT COUNT(e1) Occurrence number of e1 

MAX MAX(a1, e1, e2) Maximal value of a1 in e1 and e2 

MIN MIN(a1, e1, e2) Minimum value of a1 in e1 and e2 

FIRST FIRST(e1, e2) First event of e1 and e2 

LAST LAST(e1, e2) Last event of e1 and e2 

WITHIN WITHIN(e1, t1, t2) e1 occurs within time intervals t1 and t2 

WITHIN WITHIN(e1, t) e1 occurs within less than t 

DURING DURING(e1, e2) e1 occurs during e2 

WINDOW WINDOW(e1, t) e1 occurs for time period t 

WINDOW WINDOW(e1, n) e1 occurs n times (n>0) 

AT AT(e1, t) e1 occurs at time t 

The filter and hyperLinks in our proactive service are the 
key distinctions compared to the traditional data service 
model. In particular, filter stores a set of rules, noted as 
conditions, to process the received events. Each type of 
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input event iE  has a corresponding condition to determine 

which operations event e (i.e. iE t ) in iE  will be sent to. 

A condition can be formalized as: 

on event streams iE

if constraint1 is satisfied 

then invoke operation 1

if constraint2 is satisfied 

then invoke operation 2 

… …  
A condition includes n constraints (constraint1, 

constraint2, … , constraintn), in which constrainti  indicates 
the constraints (Li, 2009) on the content and timestamp of 
the context received events of the service. If constraintj is 
satisfied, the filter will invoke the corresponding operation 
j with the received events timestamp and content. 

After processing with the operation, we encapsulate the 
output event with the result of the operation, current time, 
and predefined event attribute. Then send the generated 
output event to the hyperLinks. hyperLinks refer to a routing 
table which is composed with multiple routing paths, and 
directs output events to the target services. Each routing 

path ,i iE S  indicates the target service when send the 

event stream iE . We will define hyperLinks after we define 

correlation. 

3.2 Service-based Data Correlation and
Hyperlinks

In the field of statistics, data correlation means the 
relationship between multi stochastic variables. Statists try 
to analyze and understand the data correlations. Herein, 
each series of sensor events or service events can be 
regarded as samples of a variable. Thus, to understand the 
correlation among them, we can learn from statistical 
correlation.  

Furthermore, according to the definition proposed 
previously, each service may have multi event streams. To 
measure correlation between services, we define the 
correlation among event streams. 

Definition 4. (Event Correlation): Given two sensor or 

service event streams ,i jE E , we define the correlation 

between event stream iE  and jE  in time range T as the 

following matrix: 

1 1 1

1

. , . , . , . ,

 , ,

. , . , . , . ,

i j i j

u i v j u i v jn

i j

i j i j

u im v j u im v jn

cor E a E a T cor E a E a T

Cor E E T

cor E a E a T cor E a E a T

,

where .i ipE a  (p = 1, 2, … , m) is an attribute in event stream 

iE  and .j jqE a  (q = 1, 2, … , n) is an attribute in event 

stream jE , and . , . ,
i j

u ip v iqcor E a E a T  is the correlation 

degree between the attribute .i ipE a  and .j jqE a  in time range 

T. 
There are many classical measures of correlation degree 

among variables such as covariance matrix, Pearson 
correlation coefficient, longest common subsequence 
(LCSS), and probability. 

As mentioned above, service hyperlinks are a collection 
of routing tables of a service. We collect them by the event 
correlations. We present the formal definition of service 
hyperlink on top of the previous concepts. 

Definition 5. (Service Hyperlink) Given a service Si, 
we define the hyperlinks of service Si as the set of event 
correlations with source service Si. Formally, 

| | , ,
i i j

i u j u v minhyperLinks S E S Cor E E T

where i

uE  is an event stream in Si, 
j

vE  is an event stream

in a target service Sj, , ,i j

u vCor E E T  refers to the event 

correlation between i

uE  and j

vE  in a time range T, and 

δmin refers to the minimum value of the correlation value. 
As following is an example of hyperlinks, service S1 has 

two output event streams 1E  and 2E ; service S2 has one 

output event stream 3E ; and service S3 has one output event 

stream 4E  Service S1 continuously studies the correlation 

between 1E , 2E  and 3E , 4E , and find that 1E  correlates 

with 3E , and 2E  correlates with 4E . Thus the hyperlinks 

of service S1 is 1 2 2 3,| |E S E S . 

3.3 Quick and Dynamic Response with
Proactive Data Services

Our service model aims at responding to the incoming 
events with runtime consideration. Receiving an event with 
certain content, our service model may take totally different 
reactions and operations in case of various environment, 
which correlates the other events already arrived at the 
service or on the way, so that each service can make its own 
decision in a bottom-up way, but not with a global 
intelligence. 

When building a service, we first design the operations, 
input events, and output events of the service based on its 
aimed functionality. Then we design the filter logic by 
filling it up with conditions. The conditions dynamically 
react to each arrived event according to the events’content, 
filtering undesired events, and handle the desired events to 
corresponding operations. Next, we train each service’s
hyperlinks by computing the correlations between their 
output event streams and other service’s output event
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streams within a sliding window. If the output event stream 
correlates to another service’s output event stream, we save
a routing path in the hyperLinks to direct that output event 
stream. As the event stream flushing in the sliding window, 
we need to recalculate and update the correlation between 
services. 

Our claim of our service model’s dynamic event
correlation is twofold. First, we calculate the hyperLinks at 
runtime, which route the output events to the target service, 
thus the routing of the events among services is dynamic. 
Second, our service model’s filter is composed with
multiple conditions, whose reaction dynamically considers 
the other arrived events. As a result, receiving an input 
event, our service model may generate various reactions at 
runtime. 

4. DISCUSSION WITH THE RUNNING

SCENARIO
We now discuss the use of our service model in the 

scenario we introduced in section 1. Our data set includes 
the data collected from the 44 sensors deployed on the PAF, 
during the period from 2014-07-01 to 2016-01-31. 
Generally, we collect 278400 data records and observe 28 
PAF anomalies including 15 fan stalls. 

To detect anomalies of PAF based on our model at 
runtime, the first step is to extract data correlations among 
sensor data and the PAF anomalies. In fact, we cannot 
generate an overall idea of all correlations of the PAF 
problems. But connecting pieces of extracted correlations 
can also lead us to a non-trivial part of anomalies. This is 
the basic idea which our service model comes from. With 
the growing amount of sensors deployed, and the growing 
knowledge on the PAF problem by digging on the runtime 
and historical data, we can extract more correlations and 
detect more anomalies with confidence at runtime. 

Now let’s come back to our scenario, we first build up
all necessary services to run the scenario. Table II shows the 
basic information of the proactive data services used in our 
scenario, including the name of the service, the operations, 

and the type of the output events. The Anomaly Alert 
service (S1) is responsible for generating the logic of 
anomaly detection, and sends alert to corresponding 
maintenance staff when an anomaly happens. The Air 
Pressure Sensor service (S5), the Vibration Sensor service 
(S6), and the Electricity Sensor service (S7) collect sensor 
data, conducting no operation, and transform the collected 
data into sensor events. The Air Pressure Decrease Anomaly 
service (S2), the Vibration Increase Anomaly service (S3), 
and the Electricity Decrease Anomaly service (S4) catch the 
sensor events, filtering no events, and conduct 
corresponding operations to generate service events to feed 
our anomaly detection service. All events in our service 
model has one single attribute as described in Table II, e.g. 

3E ’s event attribute is decreaseof air pressure. 

S1 conducts two operations: 1) when it receives an event 
of air pressure decreases by over 4 kPa, and receives both 
vibration increases by over 0.045 mm/s and electricity 
decreases by over 5 A within a time window, S1 generate a 
fan stall alert; 2) when it receives an event of air pressure 
decreases by over 4 kPa, and receives both event of 
electricity decreases by over 20 A within a time window, S1 
generate a fan surge alert. S2, S3, and S4’s operationcalculate
the value decrease/increase of the input events individually. 

Next, we fill the service filters with conditions. Services 
S5, S6, and S7 need no conditions in their filters. For services 
S2, S3, and S4, they all have one single operation, and all 
input events are necessary for value change monitoring, thus 
their conditions send all input events directly to their 
corresponding operation. For service S1, as mentioned above, 
three type of input events are considered to be processed: 

3E , 

4E , and 
5E . As shown in equation (1), (2), and (3), we used 

3 conditions for S1 to process the input events. Since an air 
pressure decreases by over 4 kPa may cause fan stall or fan 
surge, we invoke both operations of S1 as shown in equation 
(1) with all such air pressure decrease events. Since an 
increase of vibration by over 0.045mm/s in case of the air 
pressure decrease over 4 kPa may increase our 

Table II．The Detail of Services in Our Scenario. 
ID Name Operations Output Events 

S1 Anomaly Alert service 
3 4 3 3 5 3 3, . , . , . , .E t WITHIN E t E t t E t t t WITHIN E t E t t E t t t   (1) 

3 5 3 3 ,?. , .E t WITHIN E t E t t E t t t   (2) 

fan stall ( 1E ); 

fan surge ( 2E ) 

S2 
Air Pressure Decrease 
Anomaly service 6 6 , ,DIF air pressure E t E t t

decrease of air 

pressure ( 3E ) 

S3 
Vibration Increase 
Anomaly service 7 7, ,DIF vibration E t t E t

increase of 

vibration ( 4E ) 

S4 
Electricity Decrease 
Anomaly service 8 8, ,DIF electricity E t E t t

decrease of 

electricity ( 5E ); 

S5 
Air Pressure Sensor 
service  

air pressure ( 6E ) 

S6 Vibration Sensor service vibration ( 7E ) 

S7 
Electricity Sensor 
service 

electricity ( 8E ) 

9898



Proceedings of S2 International Conference on Internet of Things                                          ICIOT 2016

Air Pressure Sensor 
Service

Electricity Sensor 
Service

Vibration Sensor 
Service

<air pressure, 95.6 kPa>, 
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filter
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Figure 5. The Service Correlation Network in Our Scenario. 

invoke operation (1) of S1 (shown in table II) with such 
vibration increase events. We conduct similar condition 
design for the decrease of electricity to form condition 3. 

on decrease of air pressure ( 3E ) 

if 3 . _ _ 4E t air pressure decrease kPa  

then invoke operation  (1) and operation  (2) 

on increase of vibration ( 4E ) 

if 4 . _ 0.045 /E t vibration increase mm s  

3 . _ _ 4E t air pressure decrease kP  

then invoke operation (1) 

on decrease of electricity ( 5E ) 

if 5 . _E t electricity decrease 5A  

3 . _ _ 4E t air pressure decrease kPa  

then invoke operation (1) 

if 5 . ?E t lectricitydecrease  20A  

3 . _ _ 4E t air pressure decrease kPa   

then invoke operation (2) 
Next, let us connect the built services together, and tell 

them when and where to send each event by filling their 
hyperLinks. Initially, with no events running in our scenario, 
we calculate the output event correlations based on the 
historical data, and generate routing paths in the hyperLinks 
according to the correlations. Since fan stall and fan surge 

correlates to 3E , 4E , and 5E , we save a routing path 

3 1 4 1 5 1, / , / ,E S E S E S  in S2/S3/S4’s hyperLinks. Since 

3E  correlates to 6E , we save a routing path 6 2,E S  in 

S5’s hyperLinks. Similar for hyperlinks of S6 and S7. 

Formally, S2’s hyperLinks could be represented as 

3 1,E S , similar for the other services. 

Now the PAF anomaly detection service scenario is 
done. Let us take a runtime example with which generates a 
fan stall alert in steps: 
1) S5 keeps monitoring the air pressure, and sends the 

runtime event flow to S2. As shown is Figure 5, S5 sends 
3 events to S2 with the content key-value pairs of <air 
pressure, 95.6kPa>, <air pressure, 92.5kPa>, <air 
pressure, 88.4kPa>. 

2) S2 calculates the air pressure decrease according to the 
received events from S5, and send them to S1. In our 
scenario, S2 sends 2 events e1 e2 with the key-value 
pairs of <air pressure decrease, 3.1kPa>, <air pressure 
decrease, 4.1kPa> to S1. 

3) S1’s filter handles the received events with condition (1). 
The event e2 indicates the air pressure decreases by 
more than 4 kPa, according to condition (1), S1invokes 
both operations of S1. 

4) Neither of S1’s two operations can generate a quick 
response to e1’s invoke, since both operations expect 
other input events. Thus S1 holds e1’s timestamp and
wait for the other input events. 

5) S6 generates the events of <vibration, 0.125mm/s>, 
<vibration, 0.178mm/s> and sends them to S3. S7 
generates the event of <electricity, 138A>, <electricity, 
129A> and sends them to S4. 

6) S3 generates the event of e3 <vibration increase, 
0.053mm/s>, and sends it to S1, invoking operation (1). 
S4 generates the event of e4 <electricity decrease, 9A>, 
and sends it to S1, invoking operation (1). As a result, 
operation (1) generates a positive result. Since e4 does 
not pass condition (3)’s checking constrains, operation
(2) generates a negative result. 

7) S1 encapsulates the positive result of operation (1), and 
forms a fan stall alert. 
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5. SUMMARY
Data-driven approaches supporting locality and stimuli-

response thinking are gaining momentum. This position 
paper presents our efforts in exploiting such possibilities on 
the basis of data service mechanisms. A novel service model 
for transforming and correlating massive stream data is 
proposed. This service model shows potential in realizing 
various middle-way programmable nodes to form larger-
granularity software-defined‘sensors’inan IoT context. 
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