
Proceedings of S2 International Conference on Internet of Things ICIOT 2016

ADECENTRALIZEDANDSERVICE-BASEDAPPROACH
TOPROACTIVELY CORRELATINGSTREAMDATA

YanboHan1,2, Chen Liu1,2, Shen Su1,2, MeilingZhu1,2,3, Zhongmei Zhang1,2,3

1 BeijingKey Laboratory on Integration andAnalysis of Large-ScaleStreamData, NorthChinaUniversity of
Technology, Beijing, China

2 CloudComputingResearch Center, North ChinaUniversity of Technology, Beijing, China
3 School of Computer ScienceandTechnology, TianjinUniversity, Tianjin, China

hanyanbo@ncut.edu.cn, liuchen@ncut.edu.cn, johnsuhit@gmail.com, meilingzhu2006@126.com,
gloria_z@126.com

Abstract
Stream data from devices and sensors are considered a typical kind of big data. Though being promising, they are
useful only when we can reasonably correlate and effectively use them. Herein, services come back to the spotlight.
The position paper reports some of our efforts in promotingservice-based integration and correlation of such stream
data ina real setting– monitoringandoptimizedcoordinationof individual devices in a power plant.
Keywords: IoT Service, ProactiveData Service, Service Hyperlink, Sensor Data, CorrelatingStreamData

__

1. INTRODUCTION SENSORS AND IOT IN

INDUSTRY: A TYPICAL SCENARIO
IoT (Internet of Things) allows industry devices to be

sensed and controlled remotely, resulting in better efficiency,
accuracy and economic benefit. With the new wave of the
forth industry revolution, the IoT-based integration of
physical systems and computer systems is gaining
momentum (https://en.wikipedia.org/wiki/Industry_4.0.
Industry 4.0 Wikipedia.). The massive real-time IoT data
may drive computing processes and services, and can derive
a new horizon of industry automation with decentralized
sensing, reasoning and response. We will examine a partial
but typical scenario of such change with the example of
anomaly detection in a power plant.

In a power plant, there are hundreds of machines
running continuously and thousands of sensors deployed to

monitor machine status at real-time. The status attributes
correlate with each other in multiple ways, and indicate
equipment status and anomalies. Fig.1 illustrates some
deployed sensors and their possible correlations in a real
power plant. In this paper, we advocate a decentralized and
service-based approach to dynamically correlating the
sensor data and generating higher-level events for systems
and people. This poses many research challenges, some of
which are discussed in the paper include service modeling
of big stream data as well as data-driven and programmable
correlation through service hyperlinks.

Let us take the primary air fan (PAF) unit as an example.
As left side of Fig.2 shows, a PAF is equipped with 44
sensors, which continuously generate stream data, such as
temperature and vibration of fan bearing. The right side of

Figure 1. Snapshot of Partial Time-varying Correlations among Sensors in a Power Plant.

9393

DOI: 10.29268/iciot.2016.0014

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

air
pressure

t l

vibration

electricity

valve
degree

……

air pressure

electricity

vibration

temperature

air volume

fan stall

normal

fan surge

excess
temperature

valve
degree

ib ti

… … …

sensors dynamic correlations anomalies

air pressure
decreases

…

…

…

…

08:03:02
92.5 kPa

08:04:11
120 A

08:05:07
40 %

08:04:23
88.4 kPa

08:01:56
95.6 kPa

08:03:03
129 A

08:02:02
138 A

08:04:45
0.125mm/s

08:06:03
0.178mm/s

08:02:25
0.123mm/s

08:01:43
50 %

08:03:26
50 %

Figure 2. Possible Anomalies Led by the Quick Decrease of Air Pressure: a Real Case.
Fig.2 shows a partial process to detect anomalies in a PAF.
The motivation is an observed event, which is the quick
decrease of air pressure of a PAF. An air pressure decrease
may cause fan stall, fan surge, or temporarily nothing. We
cannot assure which result will be led at the beginning. It
needs to make synthesized analysis with the other correlated
sensor data and observe the data changes at runtime. For
example, with the air pressure decreasing by 4kPa, the
correlated sensor “degree of valve control” decreases by
10% may lead to the conclusion that the air pressure
decrease is normal. But if the bearing vibration increases by
over 0.045mm/s as well as the motor electricity decreases
by over 5A next, there is a high possibility of the fan stall
anomaly. Similarly, a fan surge can be confirmed if an air
pressure decrease happens and the motor electricity
decreases by over 20A. It is thus meaningful to correlate air
pressure decrease and fan stall, and we need to check the
bearing vibration and the motor electricity at runtime.

Note that we cannot just simply predefine a rule like “<

air pressure decreases by 4kPa ∧ degree of valve control

decreases by 10%> the air pressure decrease is normal”
to make the conclusion. The real case is much more
complicated. Firstly, we cannot clearly give the boundary
value for each rule. It is because the status of equipment and
its environment keeps changing. Secondly, the runtime
correlations among sensors vary along time. This leads to
the multiple underlying correlations among sensors. Each
one may lead to a kind of anomaly. Such path can only be
clarified step by step at runtime following the process of
situation changes and users’decisions. As a result, the
above rules may not be enumerated and pre-defined at the
beginning, and they should be formed at runtime and
gradually consummated. Hence, we wish such fast-changing
data could be automatically grouped together to generate
higher-level events with service mechanisms. In fact, the
dynamic correlations among status attributes are
significantly prevalent. More efficient and effective

anomaly detection can be achieved by dynamically
correlating the sensor data.

2. POSITIONING OF SERVICES IN THE

CONTEXT OF INDUSTRY IOT
Business applications usually follow the “request-and-

response”pattern. However, an IoT application can be more
ad hoc and reactive. Industrial sensors generate successive
on-site big stream data. It turns impractical for human
beings to grasp the whole status with the traditional way of
top-down programming and request-response thinking.
Sporadic events are generated from the dynamic correlations
of decentralized sensors along with the environment
changes. For a user, it is hard to clarify the complex
relationships or predict sporadic events.

Service-oriented paradigm has been seen as a
mainstream approach for building large-scale distributed
software systems. To decouple data to be shared from their
sources, the concept of “data as service”or “data service”is
proposed, which can provide semantically richer view and
advanced querying functionality. The abstraction of sensor
data services also gives us good opportunities to examine
the way to build an IoT application. IoT applications
possess some new intrinsic features that are different from
other software applications. To deal with situational and ad-
hoc problems, an IoT application should capture dynamic
correlations of multiple sensors to respond more
intelligently to various outside stimuli, like environment
changes, sporadic events and so on.

Recently, efforts have been made to deal with big data
by encapsulating common functionalities for storage, query,
management, and analysis as services. For example,
SenseWeb (Grosky, 2007) and Global Sensor Network
(Aberer, 2007) provided platforms to assist users to share,
manage, and access sensor data on-demand ubiquitously. Xu
et al (Xu, 2014) and Perera et al (Perera, 2015) provided IoT
data resources as services to support accessing cross-
platform data by URI through Web for IoT applications. In

9494

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

our previous work (Han, 2015). we proposed a stream data
service model to access stream data continuously in real-
time, and implemented a carpooling service based on the
stream data services. In practice, IoT applications always
operate in highly dynamic environments. Some works
(Potocnik, 2014; Bucchiarone, 2015; Cheng, 2016)
concentrate on new types of services or incremental service
composition methods to create situation-aware IoT
applications. Potocnik et al defined a new service type — a
Complex Event Aware (CEA) service that automatically
reacts to complex events specified in its interface (Potocnik,
2014). And Cheng et al proposed an event-driven service
coordination behavior model based on an extended event-
condition-action (ECA) mechanism (Cheng, 2016).

We believe an IoT application should be built with the
“stimuli-and-response”pattern. As shown in Fig 3, a novel
type of service abstraction, called as proactive data service,
is proposed to serve as the fundamental unit to form an IoT
application. Although lots of researches have focused on
how to encapsulate sensor data into services, their
traditional service model like REST service is still with the
“request-and-response”model. With the proposed service
model, we hope to find a more automatic and real-time way
for handlingsporadic events with the ‘stimuli-and-response’
pattern while maintaining the common data service
capabilities.

We blend an event model into our services. Each
proactive data service can selectively respond to all events
received from other services. There are multiple options to

generate an event. For example, we can pre-setup a set of
events, which could be caught or thrown by a data service.
An event also can be generated by dynamically correlating
various sensors. Especially when considering situation
changes, correlations among different sensors can be
regarded as important sources to generate underlying
situational events.

Correlations among data services influence event routing.
When an event routes from a source service to a target
service, the target service will be stimulated to behave
autonomous to respond to that event. Through this way,
with an event spreading over, data services on its routing
path are essentially composed.

3. CORRELATING STREAM DATA WITH

PROACTIVE DATA SERVICES

3.1 Proactive Data Services
Before defining the Proactive Data Service model for stream
data, we first state some related concepts. An event can be
denoted by e. Every event is associated with a
corresponding event source, attributes with corresponding
values, and occurrence time. A particular event can be
classified as a sensor event or a service event. The sensor
event is generated directly by sensors and the service event
is generated by services.

A
pp

li
ca

ti
o
n s

Import Air
VolumeAir Pressure Fan

Electricity
Export Air

VolumeS
en

so
rs ...

Bearing
Vibration

Energy Saving Pollution Monitor Anomaly Detection

...

Work Condition
Optimization

sensor events events routing stream data service

Legend

service events ...

...

... ...

...

...S
en

so
r

E
ve

n
t s

 P
ro

ac
ti
ve

 D
at

a
S
er

v
i c

e s

S
er

vi
ce

 E
v
en

t s

operation hyperlink ...

operation hyperlink ...

operation hyperlink ...

operation hyperlink ...

operation hyperlink ...

...

...

...

...

() () () ()

() () () ()

...

() () () ()

() () () ()

() () () ()

...

(k) (k) (k) (k)

(k) (k) (k) (k)

(k) (k) (k) (k)

...

() () () ()

() () () ()

...

Figure 3. Rationale of Our Approach.

9595

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

Definition 1. (Sensor Event): a sensor event can be
represented as ef = 〈sid, p, t〉, in which sid is the unique
identifier of the sensor which generated ef, p = 〈a, v〉 is a
key-value pair, in which a means attribute and v means
value, and t means the timestamp when the event occurs.

A service event is generated by transformation of
multiple sensor events or the other service events.

Definition 2. (Service Event): a service event can be
represented as es =〈sid, E, P, t〉, in which sid is the unique
identifier of the service generate es, E = {e1,e2,… ,en}, n>0,
which is an event set that include several sensor events or
service events which collectively constitute event es, P={〈a1,
v1〉,〈a2, v2〉,… 〈aj, vj〉} is the concrete content generate by E
which is a set of key-value pairs, and t means the timestamp
when the service event is generated.

Correspondingly, a sensor can generate an event stream

E :

1 2, , , ,f f fiE e e e

In which, each sensor event has the same sid and the

same attribute, and each sensor event disappears when new

event appears by default. And service events with the same

sid, same event set E, and same attribute sets can also form

an event stream E :

1 2, , , ,s s siE e e e .

In particular, we note an event e in event stream 3E E

as E t , in which t is the timestamp when e occurs, and

. iE t a refers to e’s valueof attribute ai.

Traditional data service is software components that
provide rich metadata and APIs for service consumers to
send data requirements and receive data from service
providers. Data service is a specialization of Web service
which can be deployed on top of data stores, other services,
or applications (Carey, 2012). However, because of the
“request-response”model for traditional data service, it
suffers certain limitations in an IoT environment, such as to
collect, process, deliver and correlate continuous sensor data.
To address these limitations, we define our proactive data
service model based on the above definition of event and
operation.

Definition3. (Proactive Data Service): We define a
proactive data service as a 6-tuple as following (shown in
Figure 4):

S = 〈uri, in_events, out_events, operations, filter,
hyperLinks〉.

In which, uri is the unique identifier, in_events
represents the input event channel receiving all event
streams which arrive at the service, filter is responsible for
deciding how to operate the received event streams and
operations contains the corresponding operations,
out_events represent the output event streams generated by
operations, and hyperLinks refer to a routing table which is

composed with multiple routing paths, and directs output
events to the target services.

output_
events

…

…

in_events

Figure 4. The Structure of Our Proactive Data Service.
Specifically, each operation in operations can be

represented as , ,trans in outop E func E , in which,

inE is a set of input event stream, func is the

transformation function, and outE is an output event stream,

in which each event is a service event.
We present some transformation operations refer to

(Wang, 2016). Table I shows part of frequently used
operations. Sensor and service events are both denoted by e.

Table I. Event Processing Operations.
Function Expression Description

CON(∧) e1∧e2
Conjunction of e1 and e2 without
occurrence order

DIS(∨) e1∨e2
Disjunction of e1 and e2 without
occurrence order

NEG(~) ~ e1 Negation of e1

SEL SEL(e1) Select an event form input events

ANY(∃) ∃(e1) Any event that occurs of e1 and e2

SEQ SEQ(e1)
Select a given sequence of events from
input events

EVERY(∀) ∀(e1) Every occurrence of e1

AVE AVE(a1, e1, e2) Average value of a1 in e1 and e2

SUM SUM(a1, e1, e2) Summation value of a1 in e1 and e2

DIF DIF(a1, e1, e2) Difference value of a1 in e1 and e2

EQ EQ(a1, e1, e2) Judge the equality of a1 in e1 and e2

COUNT COUNT(e1) Occurrence number of e1

MAX MAX(a1, e1, e2) Maximal value of a1 in e1 and e2

MIN MIN(a1, e1, e2) Minimum value of a1 in e1 and e2

FIRST FIRST(e1, e2) First event of e1 and e2

LAST LAST(e1, e2) Last event of e1 and e2

WITHIN WITHIN(e1, t1, t2) e1 occurs within time intervals t1 and t2

WITHIN WITHIN(e1, t) e1 occurs within less than t

DURING DURING(e1, e2) e1 occurs during e2

WINDOW WINDOW(e1, t) e1 occurs for time period t

WINDOW WINDOW(e1, n) e1 occurs n times (n>0)

AT AT(e1, t) e1 occurs at time t

The filter and hyperLinks in our proactive service are the
key distinctions compared to the traditional data service
model. In particular, filter stores a set of rules, noted as
conditions, to process the received events. Each type of

9696

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

input event iE has a corresponding condition to determine

which operations event e (i.e. iE t) in iE will be sent to.

A condition can be formalized as:

on event streams iE

if constraint1 is satisfied

then invoke operation 1

if constraint2 is satisfied

then invoke operation 2

… …
A condition includes n constraints (constraint1,

constraint2, … , constraintn), in which constrainti indicates
the constraints (Li, 2009) on the content and timestamp of
the context received events of the service. If constraintj is
satisfied, the filter will invoke the corresponding operation
j with the received events timestamp and content.

After processing with the operation, we encapsulate the
output event with the result of the operation, current time,
and predefined event attribute. Then send the generated
output event to the hyperLinks. hyperLinks refer to a routing
table which is composed with multiple routing paths, and
directs output events to the target services. Each routing

path ,i iE S indicates the target service when send the

event stream iE . We will define hyperLinks after we define

correlation.

3.2 Service-based Data Correlation and
Hyperlinks

In the field of statistics, data correlation means the
relationship between multi stochastic variables. Statists try
to analyze and understand the data correlations. Herein,
each series of sensor events or service events can be
regarded as samples of a variable. Thus, to understand the
correlation among them, we can learn from statistical
correlation.

Furthermore, according to the definition proposed
previously, each service may have multi event streams. To
measure correlation between services, we define the
correlation among event streams.

Definition 4. (Event Correlation): Given two sensor or

service event streams ,i jE E , we define the correlation

between event stream iE and jE in time range T as the

following matrix:

1 1 1

1

. , . , . , . ,

 , ,

. , . , . , . ,

i j i j

u i v j u i v jn

i j

i j i j

u im v j u im v jn

cor E a E a T cor E a E a T

Cor E E T

cor E a E a T cor E a E a T

,

where .i ipE a (p = 1, 2, … , m) is an attribute in event stream

iE and .j jqE a (q = 1, 2, … , n) is an attribute in event

stream jE , and . , . ,
i j

u ip v iqcor E a E a T is the correlation

degree between the attribute .i ipE a and .j jqE a in time range

T.
There are many classical measures of correlation degree

among variables such as covariance matrix, Pearson
correlation coefficient, longest common subsequence
(LCSS), and probability.

As mentioned above, service hyperlinks are a collection
of routing tables of a service. We collect them by the event
correlations. We present the formal definition of service
hyperlink on top of the previous concepts.

Definition 5. (Service Hyperlink) Given a service Si,
we define the hyperlinks of service Si as the set of event
correlations with source service Si. Formally,

| | , ,
i i j

i u j u v minhyperLinks S E S Cor E E T

where i

uE is an event stream in Si,
j

vE is an event stream

in a target service Sj, , ,i j

u vCor E E T refers to the event

correlation between i

uE and j

vE in a time range T, and

δmin refers to the minimum value of the correlation value.
As following is an example of hyperlinks, service S1 has

two output event streams 1E and 2E ; service S2 has one

output event stream 3E ; and service S3 has one output event

stream 4E Service S1 continuously studies the correlation

between 1E , 2E and 3E , 4E , and find that 1E correlates

with 3E , and 2E correlates with 4E . Thus the hyperlinks

of service S1 is 1 2 2 3,| |E S E S .

3.3 Quick and Dynamic Response with
Proactive Data Services

Our service model aims at responding to the incoming
events with runtime consideration. Receiving an event with
certain content, our service model may take totally different
reactions and operations in case of various environment,
which correlates the other events already arrived at the
service or on the way, so that each service can make its own
decision in a bottom-up way, but not with a global
intelligence.

When building a service, we first design the operations,
input events, and output events of the service based on its
aimed functionality. Then we design the filter logic by
filling it up with conditions. The conditions dynamically
react to each arrived event according to the events’content,
filtering undesired events, and handle the desired events to
corresponding operations. Next, we train each service’s
hyperlinks by computing the correlations between their
output event streams and other service’s output event

9797

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

streams within a sliding window. If the output event stream
correlates to another service’s output event stream, we save
a routing path in the hyperLinks to direct that output event
stream. As the event stream flushing in the sliding window,
we need to recalculate and update the correlation between
services.

Our claim of our service model’s dynamic event
correlation is twofold. First, we calculate the hyperLinks at
runtime, which route the output events to the target service,
thus the routing of the events among services is dynamic.
Second, our service model’s filter is composed with
multiple conditions, whose reaction dynamically considers
the other arrived events. As a result, receiving an input
event, our service model may generate various reactions at
runtime.

4. DISCUSSION WITH THE RUNNING

SCENARIO
We now discuss the use of our service model in the

scenario we introduced in section 1. Our data set includes
the data collected from the 44 sensors deployed on the PAF,
during the period from 2014-07-01 to 2016-01-31.
Generally, we collect 278400 data records and observe 28
PAF anomalies including 15 fan stalls.

To detect anomalies of PAF based on our model at
runtime, the first step is to extract data correlations among
sensor data and the PAF anomalies. In fact, we cannot
generate an overall idea of all correlations of the PAF
problems. But connecting pieces of extracted correlations
can also lead us to a non-trivial part of anomalies. This is
the basic idea which our service model comes from. With
the growing amount of sensors deployed, and the growing
knowledge on the PAF problem by digging on the runtime
and historical data, we can extract more correlations and
detect more anomalies with confidence at runtime.

Now let’s come back to our scenario, we first build up
all necessary services to run the scenario. Table II shows the
basic information of the proactive data services used in our
scenario, including the name of the service, the operations,

and the type of the output events. The Anomaly Alert
service (S1) is responsible for generating the logic of
anomaly detection, and sends alert to corresponding
maintenance staff when an anomaly happens. The Air
Pressure Sensor service (S5), the Vibration Sensor service
(S6), and the Electricity Sensor service (S7) collect sensor
data, conducting no operation, and transform the collected
data into sensor events. The Air Pressure Decrease Anomaly
service (S2), the Vibration Increase Anomaly service (S3),
and the Electricity Decrease Anomaly service (S4) catch the
sensor events, filtering no events, and conduct
corresponding operations to generate service events to feed
our anomaly detection service. All events in our service
model has one single attribute as described in Table II, e.g.

3E ’s event attribute is decreaseof air pressure.

S1 conducts two operations: 1) when it receives an event
of air pressure decreases by over 4 kPa, and receives both
vibration increases by over 0.045 mm/s and electricity
decreases by over 5 A within a time window, S1 generate a
fan stall alert; 2) when it receives an event of air pressure
decreases by over 4 kPa, and receives both event of
electricity decreases by over 20 A within a time window, S1
generate a fan surge alert. S2, S3, and S4’s operationcalculate
the value decrease/increase of the input events individually.

Next, we fill the service filters with conditions. Services
S5, S6, and S7 need no conditions in their filters. For services
S2, S3, and S4, they all have one single operation, and all
input events are necessary for value change monitoring, thus
their conditions send all input events directly to their
corresponding operation. For service S1, as mentioned above,
three type of input events are considered to be processed:

3E ,

4E , and
5E . As shown in equation (1), (2), and (3), we used

3 conditions for S1 to process the input events. Since an air
pressure decreases by over 4 kPa may cause fan stall or fan
surge, we invoke both operations of S1 as shown in equation
(1) with all such air pressure decrease events. Since an
increase of vibration by over 0.045mm/s in case of the air
pressure decrease over 4 kPa may increase our

Table II．The Detail of Services in Our Scenario.
ID Name Operations Output Events

S1 Anomaly Alert service
3 4 3 3 5 3 3, . , . , . , .E t WITHIN E t E t t E t t t WITHIN E t E t t E t t t (1)

3 5 3 3 ,?. , .E t WITHIN E t E t t E t t t (2)

fan stall (1E);

fan surge (2E)

S2
Air Pressure Decrease
Anomaly service 6 6 , ,DIF air pressure E t E t t

decrease of air

pressure (3E)

S3
Vibration Increase
Anomaly service 7 7, ,DIF vibration E t t E t

increase of

vibration (4E)

S4
Electricity Decrease
Anomaly service 8 8, ,DIF electricity E t E t t

decrease of

electricity (5E);

S5
Air Pressure Sensor
service

air pressure (6E)

S6 Vibration Sensor service vibration (7E)

S7
Electricity Sensor
service

electricity (8E)

9898

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

Air Pressure Sensor
Service

Electricity Sensor
Service

Vibration Sensor
Service

<air pressure, 95.6 kPa>,
<air pressure, 92.5 kPa>,
<air pressure, 88.4 kPa>,

……

<vibration,0.123 mm/s>,
<vibration,0.125 mm/s>,
<vibration,0.178 mm/s>,

……

<electricity,138 A>,
<electricity,129 A>,
<electricity,120 A>,

……

<air pressure
decrease, 4.1 kPa>

<vibration increase,
0.053 mm/s>

<electricity decrease,
9 A>

operations

Air Pressure Decrease
Anomaly Service

Vibration Increase
Anomaly Service

Electricity Decrease
Anomaly Service

hyperLinks

operations hyperLinks

operations hyperLinks

fan stall

fan surge

Anomaly Alert Service

filter

filter

filter

Figure 5. The Service Correlation Network in Our Scenario.

invoke operation (1) of S1 (shown in table II) with such
vibration increase events. We conduct similar condition
design for the decrease of electricity to form condition 3.

on decrease of air pressure (3E)

if 3 . _ _ 4E t air pressure decrease kPa

then invoke operation (1) and operation (2)

on increase of vibration (4E)

if 4 . _ 0.045 /E t vibration increase mm s

3 . _ _ 4E t air pressure decrease kP

then invoke operation (1)

on decrease of electricity (5E)

if 5 . _E t electricity decrease 5A

3 . _ _ 4E t air pressure decrease kPa

then invoke operation (1)

if 5 . ?E t lectricitydecrease 20A

3 . _ _ 4E t air pressure decrease kPa

then invoke operation (2)
Next, let us connect the built services together, and tell

them when and where to send each event by filling their
hyperLinks. Initially, with no events running in our scenario,
we calculate the output event correlations based on the
historical data, and generate routing paths in the hyperLinks
according to the correlations. Since fan stall and fan surge

correlates to 3E , 4E , and 5E , we save a routing path

3 1 4 1 5 1, / , / ,E S E S E S in S2/S3/S4’s hyperLinks. Since

3E correlates to 6E , we save a routing path 6 2,E S in

S5’s hyperLinks. Similar for hyperlinks of S6 and S7.

Formally, S2’s hyperLinks could be represented as

3 1,E S , similar for the other services.

Now the PAF anomaly detection service scenario is
done. Let us take a runtime example with which generates a
fan stall alert in steps:
1) S5 keeps monitoring the air pressure, and sends the

runtime event flow to S2. As shown is Figure 5, S5 sends
3 events to S2 with the content key-value pairs of <air
pressure, 95.6kPa>, <air pressure, 92.5kPa>, <air
pressure, 88.4kPa>.

2) S2 calculates the air pressure decrease according to the
received events from S5, and send them to S1. In our
scenario, S2 sends 2 events e1 e2 with the key-value
pairs of <air pressure decrease, 3.1kPa>, <air pressure
decrease, 4.1kPa> to S1.

3) S1’s filter handles the received events with condition (1).
The event e2 indicates the air pressure decreases by
more than 4 kPa, according to condition (1), S1invokes
both operations of S1.

4) Neither of S1’s two operations can generate a quick
response to e1’s invoke, since both operations expect
other input events. Thus S1 holds e1’s timestamp and
wait for the other input events.

5) S6 generates the events of <vibration, 0.125mm/s>,
<vibration, 0.178mm/s> and sends them to S3. S7
generates the event of <electricity, 138A>, <electricity,
129A> and sends them to S4.

6) S3 generates the event of e3 <vibration increase,
0.053mm/s>, and sends it to S1, invoking operation (1).
S4 generates the event of e4 <electricity decrease, 9A>,
and sends it to S1, invoking operation (1). As a result,
operation (1) generates a positive result. Since e4 does
not pass condition (3)’s checking constrains, operation
(2) generates a negative result.

7) S1 encapsulates the positive result of operation (1), and
forms a fan stall alert.

9999

Proceedings of S2 International Conference on Internet of Things ICIOT 2016

5. SUMMARY
Data-driven approaches supporting locality and stimuli-

response thinking are gaining momentum. This position
paper presents our efforts in exploiting such possibilities on
the basis of data service mechanisms. A novel service model
for transforming and correlating massive stream data is
proposed. This service model shows potential in realizing
various middle-way programmable nodes to form larger-
granularity software-defined‘sensors’inan IoT context.

6. REFERENCES
Grosky W I, Kansal A, Nath S, et al. (2007). SenseWeb: An infrastructure
for shared sensing[J]. IEEE Multimedia, 14(4):8-13.

Aberer K, Hauswirth M, Salehi A. (2007). Infrastructure for data
processing in large-scale interconnected sensor networks. International
Conference on Mobile Data Management (MDM), 2007:198-205.

Xu B, Xu L D, Cai H, et al. (2014). Ubiquitous data accessing method in
IoT-based information system for emergency medical services[J]. IEEE
Transactions on Industrial Informatics, 10(2):1578-1586.

Perera C, Talagala D S, Liu C H, et al. (2015). Energy-efficient location
and activity-aware on-demand mobile distributed sensing platform for
sensing as a service in IoT clouds [J]. IEEE Transactions on Computational
Social Systems, 2(4):171-181.

Han Y, Wang G, Yu J, et al. (2015). A service-based approach to traffic
sensor data integration and analysis to support community-wide green
commute in China. IEEE Transactions on Intelligent Transportation
Systems, 1(9): 2648-2657.

Potocnik M, Juric M B. (2014). Towards complex event aware services as
part of SOA[J]. IEEE Transactions on Services Computing, 7(3): 486-500.

Bucchiarone A, Sanctis M D, Marconi A, et al. (2015). Design for
adaptation of distributed service-based systems. Service-Oriented
Computing: International Conference (ICSOC), 2015: 383-393.

Cheng B, Zhu D, Zhao S, et al. (2016). Situation-aware IoT service
coordination using the event-driven SOA paradigm[J]. IEEE Transactions
on Network & Service Management, 13(2): 349-361.

Carey M J, Onose N, Petropoulos M. (2012). Data services[J].
Communications of the ACM, 55(6):86-97.

Wang D, Zhou M, Sajid A, et al. (2016). A Novel Complex Event
Processing Engine for Intelligent Data Analysis in Integrated Information
Systems[J]. International Journal of Distributed Sensor Networks,
2016(2):1-14.

Li X, Cheng B, Yang G, Liu Q. (2009). Method of Web Services
Composition Based on Events[J]. Journal of Software, 20(12): 3101−3116.

Authors

Yanbo Han holds a PhD in computer
science from the Technical University of
Berlin in Germany. Dr. Han has been a
full professor in computer science since
2000 (first with the Institute of
Computing Technology, Chinese
Academy of Sciences till 2012, and now

with the North China University of Technology). He is in
charge of the Cloud Computing Research Center, North
China University of Technology. He is also the director of

Beijing Key Laboratory on Integration and Analysis of
Large-scale Streaming Data. His current research interests
include streaming data processing, cloud computing,
dependable distributed systems, business process
collaboration and management. Dr. Han has undertaken
over 40 funded research projects and served as the PI of the
China Grid initiative. He has authored or coauthored over
160 papers and 5 books. His team has acquired over 70
intellectual properties, and 15 of them have been transferred
to the industry. Dr. Han has organized over 30 academic
events as general chairs or program chairs including 12
journal special issues.

Chen Liu received his Ph.D. degree in
computer science and technology from the
Chinese Academy of Sciences, Beijing,
China, in 2007. Since 2012, he has been
an Associate Professor at Research Center
for Cloud Computing, North China
University of Technology, Beijing, China.

His research interests include data integration, service
modeling, service composition, cloud computing and so on.

Shen Su received his Ph.D. degree in
computer science and technology from
Harbin Institute of Technology, in 2016.
Since 2016, he has been a lecturer at
Research Center for Cloud Computing,
North China University of Technology,
Beijing, China. His research interests

include service computing, service composition, inter-
domain routing modeling and analysis, sentiment analysis,
etc.

Meiling Zhu is currently a Ph.D
candidate at the School of Compute
Science and Technology of Tianjin
University, China. Her research
interests include Services Computing,
Streaming Data Integration and
Analysis.

Zhongmei Zhang is currently a Ph.D
candidate at the School of Compute
Science and Technology of Tianjin
University, China. Her research
interests include Services Computing,
Streaming Data Integration and
Analysis.

100100

